Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate

28 Sep 2019  ·  Lu Mi, Hao Wang, Yonglong Tian, Hao He, Nir Shavit ·

Uncertainty estimation is an essential step in the evaluation of the robustness for deep learning models in computer vision, especially when applied in risk-sensitive areas. However, most state-of-the-art deep learning models either fail to obtain uncertainty estimation or need significant modification (e.g., formulating a proper Bayesian treatment) to obtain it. Most previous methods are not able to take an arbitrary model off the shelf and generate uncertainty estimation without retraining or redesigning it. To address this gap, we perform a systematic exploration into training-free uncertainty estimation for dense regression, an unrecognized yet important problem, and provide a theoretical construction justifying such estimations. We propose three simple and scalable methods to analyze the variance of outputs from a trained network under tolerable perturbations: infer-transformation, infer-noise, and infer-dropout. They operate solely during the inference, without the need to re-train, re-design, or fine-tune the models, as typically required by state-of-the-art uncertainty estimation methods. Surprisingly, even without involving such perturbations in training, our methods produce comparable or even better uncertainty estimation when compared to training-required state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here