Training Generative Adversarial Networks from Incomplete Observations using Factorised Discriminators

Generative adversarial networks (GANs) have shown great success in applications such as image generation and inpainting. However, they typically require large datasets, which are often not available, especially in the context of prediction tasks such as image segmentation that require labels... (read more)

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper