Training with Growing Sets: A Simple Alternative to Curriculum Learning and Self Paced Learning

ICLR 2018  ·  Melike Nur Mermer, Mehmet Fatih Amasyali ·

Curriculum learning and Self paced learning are popular topics in the machine learning that suggest to put the training samples in order by considering their difficulty levels. Studies in these topics show that starting with a small training set and adding new samples according to difficulty levels improves the learning performance... In this paper we experimented that we can also obtain good results by adding the samples randomly without a meaningful order. We compared our method with classical training, Curriculum learning, Self paced learning and their reverse ordered versions. Results of the statistical tests show that the proposed method is better than classical method and similar with the others. These results point a new training regime that removes the process of difficulty level determination in Curriculum and Self paced learning and as successful as these methods. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here