Transductive Boltzmann Machines

21 May 2018  ·  Mahito Sugiyama, Koji Tsuda, Hiroyuki Nakahara ·

We present transductive Boltzmann machines (TBMs), which firstly achieve transductive learning of the Gibbs distribution. While exact learning of the Gibbs distribution is impossible by the family of existing Boltzmann machines due to combinatorial explosion of the sample space, TBMs overcome the problem by adaptively constructing the minimum required sample space from data to avoid unnecessary generalization. We theoretically provide bias-variance decomposition of the KL divergence in TBMs to analyze its learnability, and empirically demonstrate that TBMs are superior to the fully visible Boltzmann machines and popularly used restricted Boltzmann machines in terms of efficiency and effectiveness.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here