Transfer Learning Enhanced Common Spatial Pattern Filtering for Brain Computer Interfaces (BCIs): Overview and a New Approach

8 Aug 2018  ·  He He, Dongrui Wu ·

The electroencephalogram (EEG) is the most widely used input for brain computer interfaces (BCIs), and common spatial pattern (CSP) is frequently used to spatially filter it to increase its signal-to-noise ratio. However, CSP is a supervised filter, which needs some subject-specific calibration data to design. This is time-consuming and not user-friendly. A promising approach for shortening or even completely eliminating this calibration session is transfer learning, which leverages relevant data or knowledge from other subjects or tasks. This paper reviews three existing approaches for incorporating transfer learning into CSP, and also proposes a new transfer learning enhanced CSP approach. Experiments on motor imagery classification demonstrate their effectiveness. Particularly, our proposed approach achieves the best performance when the number of target domain calibration samples is small.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here