Transfer Learning for Health-related Twitter Data

WS 2019  ·  Anne Dirkson, Suzan Verberne ·

Transfer learning is promising for many NLP applications, especially in tasks with limited labeled data. This paper describes the methods developed by team TMRLeiden for the 2019 Social Media Mining for Health Applications (SMM4H) Shared Task. Our methods use state-of-the-art transfer learning methods to classify, extract and normalise adverse drug effects (ADRs) and to classify personal health mentions from health-related tweets. The code and fine-tuned models are publicly available.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here