Transfer Learning for Less-Resourced Semitic Languages Speech Recognition: the Case of Amharic

LREC 2020 Yonas Woldemariam

While building automatic speech recognition (ASR) requires a large amount of speech and text data, the problem gets worse for less-resourced languages. In this paper, we investigate a model adaptation method, namely transfer learning for a less-resourced Semitic language i.e., Amharic, to solve resource scarcity problems in speech recognition development and improve the Amharic ASR model... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet