Transfer Learning for Rapid Extraction of Thickness from Optical Spectra of Semiconductor Thin Films

High-throughput experimentation with autonomous workflows, increasingly used to screen and optimize optoelectronic thin films, requires matching throughput of downstream characterizations. Despite being essential, thickness characterization lags in throughput. Although optical spectroscopic methods, e.g., spectrophotometry, provide quick measurements, a critical bottleneck is the ensuing manual fitting of optical oscillation models to the measured reflection and transmission. This study presents a machine-learning (ML) framework called thicknessML, which rapidly extracts film thickness from spectroscopic reflection and transmission. thicknessML leverages transfer learning to generalize to materials of different underlying optical oscillator models (i.e., different material classes).We demonstrate that thicknessML can extract film thickness from six perovskite samples in a two-stage process: (1) pre-training on a generic simulated dataset of Tauc-Lorentz oscillator, and (2) transfer learning to a simulated perovskite dataset of several literature perovskite refractive indices. Results show a pre-training thickness mean absolute percentage error (MAPE) of 5-7% and an experimental thickness MAPE of 6-19%.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here