Transfer Learning for Sequences via Learning to Collocate

Transfer learning aims to solve the data sparsity for a target domain by applying information of the source domain. Given a sequence (e.g. a natural language sentence), the transfer learning, usually enabled by recurrent neural network (RNN), represents the sequential information transfer. RNN uses a chain of repeating cells to model the sequence data. However, previous studies of neural network based transfer learning simply represents the whole sentence by a single vector, which is unfeasible for seq2seq and sequence labeling. Meanwhile, such layer-wise transfer learning mechanisms lose the fine-grained cell-level information from the source domain. In this paper, we proposed the aligned recurrent transfer, ART, to achieve cell-level information transfer. ART is under the pre-training framework. Each cell attentively accepts transferred information from a set of positions in the source domain. Therefore, ART learns the cross-domain word collocations in a more flexible way. We conducted extensive experiments on both sequence labeling tasks (POS tagging, NER) and sentence classification (sentiment analysis). ART outperforms the state-of-the-arts over all experiments.

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods