Transfer Learning via Unsupervised Task Discovery for Visual Question Answering

We study how to leverage off-the-shelf visual and linguistic data to cope with out-of-vocabulary answers in visual question answering task. Existing large-scale visual datasets with annotations such as image class labels, bounding boxes and region descriptions are good sources for learning rich and diverse visual concepts. However, it is not straightforward how the visual concepts can be captured and transferred to visual question answering models due to missing link between question dependent answering models and visual data without question. We tackle this problem in two steps: 1) learning a task conditional visual classifier, which is capable of solving diverse question-specific visual recognition tasks, based on unsupervised task discovery and 2) transferring the task conditional visual classifier to visual question answering models. Specifically, we employ linguistic knowledge sources such as structured lexical database (e.g. WordNet) and visual descriptions for unsupervised task discovery, and transfer a learned task conditional visual classifier as an answering unit in a visual question answering model. We empirically show that the proposed algorithm generalizes to out-of-vocabulary answers successfully using the knowledge transferred from the visual dataset.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here