Transferring and Regularizing Prediction for Semantic Segmentation

CVPR 2020 Yiheng ZhangZhaofan QiuTing YaoChong-Wah NgoDong LiuTao Mei

Semantic segmentation often requires a large set of images with pixel-level annotations. In the view of extremely expensive expert labeling, recent research has shown that the models trained on photo-realistic synthetic data (e.g., computer games) with computer-generated annotations can be adapted to real images... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet