Transferring Voice Knowledge for Acoustic Event Detection: An Empirical Study

Detection of common events and scenes from audio is useful for extracting and understanding human contexts in daily life. Prior studies have shown that leveraging knowledge from a relevant domain is beneficial for a target acoustic event detection (AED) process. Inspired by the observation that many human-centered acoustic events in daily life involve voice elements, this paper investigates the potential of transferring high-level voice representations extracted from a public speaker dataset to enrich an AED pipeline. Towards this end, we develop a dual-branch neural network architecture for the joint learning of voice and acoustic features during an AED process and conduct thorough empirical studies to examine the performance on the public AudioSet [1] with different types of inputs. Our main observations are that: 1) Joint learning of audio and voice inputs improves the AED performance (mean average precision) for both a CNN baseline (0.292 vs 0.134 mAP) and a TALNet [2] baseline (0.361 vs 0.351 mAP); 2) Augmenting the extra voice features is critical to maximize the model performance with dual inputs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here