Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling

9 Jul 2022  ·  Tung Nguyen, Aditya Grover ·

Neural Processes (NPs) are a popular class of approaches for meta-learning. Similar to Gaussian Processes (GPs), NPs define distributions over functions and can estimate uncertainty in their predictions. However, unlike GPs, NPs and their variants suffer from underfitting and often have intractable likelihoods, which limit their applications in sequential decision making. We propose Transformer Neural Processes (TNPs), a new member of the NP family that casts uncertainty-aware meta learning as a sequence modeling problem. We learn TNPs via an autoregressive likelihood-based objective and instantiate it with a novel transformer-based architecture. The model architecture respects the inductive biases inherent to the problem structure, such as invariance to the observed data points and equivariance to the unobserved points. We further investigate knobs within the TNP framework that tradeoff expressivity of the decoding distribution with extra computation. Empirically, we show that TNPs achieve state-of-the-art performance on various benchmark problems, outperforming all previous NP variants on meta regression, image completion, contextual multi-armed bandits, and Bayesian optimization.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods