Transformer-Transducers for Code-Switched Speech Recognition

30 Nov 2020  ·  Siddharth Dalmia, Yuzong Liu, Srikanth Ronanki, Katrin Kirchhoff ·

We live in a world where 60% of the population can speak two or more languages fluently. Members of these communities constantly switch between languages when having a conversation. As automatic speech recognition (ASR) systems are being deployed to the real-world, there is a need for practical systems that can handle multiple languages both within an utterance or across utterances. In this paper, we present an end-to-end ASR system using a transformer-transducer model architecture for code-switched speech recognition. We propose three modifications over the vanilla model in order to handle various aspects of code-switching. First, we introduce two auxiliary loss functions to handle the low-resource scenario of code-switching. Second, we propose a novel mask-based training strategy with language ID information to improve the label encoder training towards intra-sentential code-switching. Finally, we propose a multi-label/multi-audio encoder structure to leverage the vast monolingual speech corpora towards code-switching. We demonstrate the efficacy of our proposed approaches on the SEAME dataset, a public Mandarin-English code-switching corpus, achieving a mixed error rate of 18.5% and 26.3% on test_man and test_sge sets respectively.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here