Transient Stability of Hybrid Power Systems Dominated by Different Types of Grid-Forming Devices

22 Apr 2021  ·  Xiuqiang He, Hua Geng ·

This paper investigates the transient stability of power systems co-dominated by different types of grid-forming (GFM) devices. Synchronous generators (SGs and VSGs) and droop-controlled inverters are typical GFM devices in modern power systems. SGs/VSGs are able to provide inertia while droop-controlled inverters are generally inertialess. The transient stability of power systems dominated by homogeneous GFM devices has been extensively studied. Regarding the hybrid system jointly dominated by heterogeneous GFM devices, the transient stability is rarely reported. This paper aims to fill this gap. It is found that the synchronization behavior of the hybrid system can be described by a second-order motion equation, resembling the swing equation of SGs. Moreover, two significant differences from conventional power systems are discovered. The first is that the droop control dramatically enhances the damping effect, greatly affecting the transient stability region. The second is that the frequency state variable exhibits a jump at the moment of fault disturbances, thus impacting the post-fault initial-state location and stability assessment. The underlying mechanism behind the two new characteristics is clarified and the impact on the transient stability performance is analyzed and verified. The findings provide new insights into transient stability of power systems hosting heterogeneous devices.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here