Translating Diffusion, Wavelets, and Regularisation into Residual Networks

7 Feb 2020  ·  Tobias Alt, Joachim Weickert, Pascal Peter ·

Convolutional neural networks (CNNs) often perform well, but their stability is poorly understood. To address this problem, we consider the simple prototypical problem of signal denoising, where classical approaches such as nonlinear diffusion, wavelet-based methods and regularisation offer provable stability guarantees. To transfer such guarantees to CNNs, we interpret numerical approximations of these classical methods as a specific residual network (ResNet) architecture. This leads to a dictionary which allows to translate diffusivities, shrinkage functions, and regularisers into activation functions, and enables a direct communication between the four research communities. On the CNN side, it does not only inspire new families of nonmonotone activation functions, but also introduces intrinsically stable architectures for an arbitrary number of layers.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here