Transport Model for Feature Extraction

31 Oct 2019  ·  Wojciech Czaja, Dong Dong, Pierre-Emmanuel Jabin, Franck Olivier Ndjakou Njeunje ·

We present a new feature extraction method for complex and large datasets, based on the concept of transport operators on graphs. The proposed approach generalizes and extends the many existing data representation methodologies built upon diffusion processes, to a new domain where dynamical systems play a key role. The main advantage of this approach comes from the ability to exploit different relationships than those arising in the context of e.g., Graph Laplacians. Fundamental properties of the transport operators are proved. We demonstrate the flexibility of the method by introducing several diverse examples of transformations. We close the paper with a series of computational experiments and applications to the problem of classification of hyperspectral satellite imagery, to illustrate the practical implications of our algorithm and its ability to quantify new aspects of relationships within complicated datasets.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here