TRAR: Routing the Attention Spans in Transformer for Visual Question Answering

Due to the superior ability of global dependency modeling, Transformer and its variants have become the primary choice of many vision-and-language tasks. However, in tasks like Visual Question Answering (VQA) and Referring Expression Comprehension (REC), the multimodal prediction often requires visual information from macro- to micro-views. Therefore, how to dynamically schedule the global and local dependency modeling in Transformer has become an emerging issue. In this paper, we propose an example-dependent routing scheme called TRAnsformer Routing (TRAR) to address this issue. Specifically, in TRAR, each visual Transformer layer is equipped with a routing module with different attention spans. The model can dynamically select the corresponding attentions based on the output of the previous inference step, so as to formulate the optimal routing path for each example. Notably, with careful designs, TRAR can reduce the additional computation and memory overhead to almost negligible. To validate TRAR, we conduct extensive experiments on five benchmark datasets of VQA and REC, and achieve superior performance gains than the standard Transformers and a bunch of state-of-the-art methods.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.