Trash to Treasure: Low-Light Object Detection via Decomposition-and-Aggregation

7 Sep 2023  ·  Xiaohan Cui, Long Ma, Tengyu Ma, JinYuan Liu, Xin Fan, Risheng Liu ·

Object detection in low-light scenarios has attracted much attention in the past few years. A mainstream and representative scheme introduces enhancers as the pre-processing for regular detectors. However, because of the disparity in task objectives between the enhancer and detector, this paradigm cannot shine at its best ability. In this work, we try to arouse the potential of enhancer + detector. Different from existing works, we extend the illumination-based enhancers (our newly designed or existing) as a scene decomposition module, whose removed illumination is exploited as the auxiliary in the detector for extracting detection-friendly features. A semantic aggregation module is further established for integrating multi-scale scene-related semantic information in the context space. Actually, our built scheme successfully transforms the "trash" (i.e., the ignored illumination in the detector) into the "treasure" for the detector. Plenty of experiments are conducted to reveal our superiority against other state-of-the-art methods. The code will be public if it is accepted.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here