Trend Filtering on Graphs

28 Oct 2014  ·  Yu-Xiang Wang, James Sharpnack, Alex Smola, Ryan J. Tibshirani ·

We introduce a family of adaptive estimators on graphs, based on penalizing the $\ell_1$ norm of discrete graph differences. This generalizes the idea of trend filtering [Kim et al. (2009), Tibshirani (2014)], used for univariate nonparametric regression, to graphs. Analogous to the univariate case, graph trend filtering exhibits a level of local adaptivity unmatched by the usual $\ell_2$-based graph smoothers. It is also defined by a convex minimization problem that is readily solved (e.g., by fast ADMM or Newton algorithms). We demonstrate the merits of graph trend filtering through examples and theory.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods