Truly shift-equivariant convolutional neural networks with adaptive polyphase upsampling

9 May 2021  ·  Anadi Chaman, Ivan Dokmanić ·

Convolutional neural networks lack shift equivariance due to the presence of downsampling layers. In image classification, adaptive polyphase downsampling (APS-D) was recently proposed to make CNNs perfectly shift invariant. However, in networks used for image reconstruction tasks, it can not by itself restore shift equivariance. We address this problem by proposing adaptive polyphase upsampling (APS-U), a non-linear extension of conventional upsampling, which allows CNNs with symmetric encoder-decoder architecture (for example U-Net) to exhibit perfect shift equivariance. With MRI and CT reconstruction experiments, we show that networks containing APS-D/U layers exhibit state of the art equivariance performance without sacrificing on image reconstruction quality. In addition, unlike prior methods like data augmentation and anti-aliasing, the gains in equivariance obtained from APS-D/U also extend to images outside the training distribution.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here