Truncating Wide Networks using Binary Tree Architectures

Recent study shows that a wide deep network can obtain accuracy comparable to a deeper but narrower network. Compared to narrower and deeper networks, wide networks employ relatively less number of layers and have various important benefits, such that they have less running time on parallel computing devices, and they are less affected by gradient vanishing problems... (read more)

PDF Abstract ICCV 2017 PDF ICCV 2017 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet