Paper

SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty Propagation in Encoder-Decoder Networks

Deep Learning (DL) holds great promise in reshaping the healthcare industry owing to its precision, efficiency, and objectivity. However, the brittleness of DL models to noisy and out-of-distribution inputs is ailing their deployment in the clinic. Most models produce point estimates without further information about model uncertainty or confidence. This paper introduces a new Bayesian DL framework for uncertainty quantification in segmentation neural networks: SUPER-Net: trustworthy medical image Segmentation with Uncertainty Propagation in Encoder-decodeR Networks. SUPER-Net analytically propagates, using Taylor series approximations, the first two moments (mean and covariance) of the posterior distribution of the model parameters across the nonlinear layers. In particular, SUPER-Net simultaneously learns the mean and covariance without expensive post-hoc Monte Carlo sampling or model ensembling. The output consists of two simultaneous maps: the segmented image and its pixelwise uncertainty map, which corresponds to the covariance matrix of the predictive distribution. We conduct an extensive evaluation of SUPER-Net on medical image segmentation of Magnetic Resonances Imaging and Computed Tomography scans under various noisy and adversarial conditions. Our experiments on multiple benchmark datasets demonstrate that SUPER-Net is more robust to noise and adversarial attacks than state-of-the-art segmentation models. Moreover, the uncertainty map of the proposed SUPER-Net associates low confidence (or equivalently high uncertainty) to patches in the test input images that are corrupted with noise, artifacts, or adversarial attacks. Perhaps more importantly, the model exhibits the ability of self-assessment of its segmentation decisions, notably when making erroneous predictions due to noise or adversarial examples.

Results in Papers With Code
(↓ scroll down to see all results)