Tube-NeRF: Efficient Imitation Learning of Visuomotor Policies from MPC using Tube-Guided Data Augmentation and NeRFs

23 Nov 2023  ·  Andrea Tagliabue, Jonathan P. How ·

Imitation learning (IL) can train computationally-efficient sensorimotor policies from a resource-intensive Model Predictive Controller (MPC), but it often requires many samples, leading to long training times or limited robustness. To address these issues, we combine IL with a variant of robust MPC that accounts for process and sensing uncertainties, and we design a data augmentation (DA) strategy that enables efficient learning of vision-based policies. The proposed DA method, named Tube-NeRF, leverages Neural Radiance Fields (NeRFs) to generate novel synthetic images, and uses properties of the robust MPC (the tube) to select relevant views and to efficiently compute the corresponding actions. We tailor our approach to the task of localization and trajectory tracking on a multirotor, by learning a visuomotor policy that generates control actions using images from the onboard camera as only source of horizontal position. Numerical evaluations show 80-fold increase in demonstration efficiency and a 50% reduction in training time over current IL methods. Additionally, our policies successfully transfer to a real multirotor, achieving low tracking errors despite large disturbances, with an onboard inference time of only 1.5 ms. Video: https://youtu.be/_W5z33ZK1m4

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here