Two-Stream Network for Sign Language Recognition and Translation

2 Nov 2022  ·  Yutong Chen, Ronglai Zuo, Fangyun Wei, Yu Wu, Shujie Liu, Brian Mak ·

Sign languages are visual languages using manual articulations and non-manual elements to convey information. For sign language recognition and translation, the majority of existing approaches directly encode RGB videos into hidden representations. RGB videos, however, are raw signals with substantial visual redundancy, leading the encoder to overlook the key information for sign language understanding. To mitigate this problem and better incorporate domain knowledge, such as handshape and body movement, we introduce a dual visual encoder containing two separate streams to model both the raw videos and the keypoint sequences generated by an off-the-shelf keypoint estimator. To make the two streams interact with each other, we explore a variety of techniques, including bidirectional lateral connection, sign pyramid network with auxiliary supervision, and frame-level self-distillation. The resulting model is called TwoStream-SLR, which is competent for sign language recognition (SLR). TwoStream-SLR is extended to a sign language translation (SLT) model, TwoStream-SLT, by simply attaching an extra translation network. Experimentally, our TwoStream-SLR and TwoStream-SLT achieve state-of-the-art performance on SLR and SLT tasks across a series of datasets including Phoenix-2014, Phoenix-2014T, and CSL-Daily. Code and models are available at: https://github.com/FangyunWei/SLRT.

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Sign Language Translation CSL-Daily TwoStream-SLT BLEU-4 25.79 # 1
Sign Language Recognition CSL-Daily TwoStream-SLR Word Error Rate (WER) 25.3 # 2
Sign Language Recognition RWTH-PHOENIX-Weather 2014 TwoStream-SLR Word Error Rate (WER) 18.4 # 2
Sign Language Translation RWTH-PHOENIX-Weather 2014 T TwoStream-SLT BLEU-4 28.95 # 2
Sign Language Recognition RWTH-PHOENIX-Weather 2014 T TwoStream-SLR Word Error Rate (WER) 19.3 # 2

Methods