UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without needing expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods with divide-and-conquer strategies have shown superiorities in addressing large-scale CO problems. Nevertheless, the efficiency of these methods highly relies on problem-specific heuristics in either the divide or the conquer procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, which often leads to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global dividing and a fixed-length sub-path solver for conquering sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems.
PDF Abstract