UDHF2-Net: Uncertainty-diffusion-model-based High-Frequency TransFormer Network for Remotely Sensed Imagery Interpretation

23 Jun 2024  ·  Pengfei Zhang, Chang Li, Yongjun Zhang, Rongjun Qin ·

Remotely sensed imagery interpretation (RSII) faces the three major problems: (1) objective representation of spatial distribution patterns; (2) edge uncertainty problem caused by downsampling encoder and intrinsic edge noises (e.g., mixed pixel and edge occlusion etc.); and (3) false detection problem caused by geometric registration error in change detection. To solve the aforementioned problems, uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the first to be proposed, whose superiorities are as follows: (1) a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP) is proposed to enhance the interaction of spatially frequency-wise stationary and non-stationary features to yield high-fidelity edge extraction result. Inspired by HRFormer, SHCP proposes high-frequency-wise stream to replace high-resolution-wise stream in HRFormer through the whole encoder-decoder process with parallel frequency-wise high-to-low streams, so it improves the edge extraction accuracy by continuously remaining high-frequency information; (2) a mask-and-geo-knowledge-based uncertainty diffusion module (MUDM), which is a self-supervised learning strategy, is proposed to improve the edge accuracy of extraction and change detection by gradually removing the simulated spectrum noises based on geo-knowledge and the generated diffused spectrum noises; (3) a frequency-wise semi-pseudo-Siamese UDHF2-Net is the first to be proposed to balance accuracy and complexity for change detection. Besides the aforementioned spectrum noises in semantic segmentation, MUDM is also a self-supervised learning strategy to effectively reduce the edge false change detection from the generated imagery with geometric registration error.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods