Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds

28 Dec 2020  ·  Gilles Pages, Fabien Panloup ·

In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More precisely, the objective of this paper is to control the distance of the standard Euler scheme with decreasing step ({usually called Unadjusted Langevin Algorithm in the Monte Carlo literature}) to the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and under {uniform} ellipticity assumptions on the diffusion coefficient, we establish (or improve) such bounds for Total Variation and $L^1$-Wasserstein distances in both multiplicative and additive and frameworks. These bounds rely on weak error expansions using {Stochastic Analysis} adapted to decreasing step setting.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Probability Statistics Theory Statistics Theory