UNCC QA: Biomedical Question Answering system

WS 2018  ·  Bh, Abhishek waldar, Wlodek Zadrozny ·

In this paper, we detail our submission to the BioASQ competition{'}s Biomedical Semantic Question and Answering task. Our system uses extractive summarization techniques to generate answers and has scored highest ROUGE-2 and Rogue-SU4 in all test batch sets. Our contributions are named-entity based method for answering factoid and list questions, and an extractive summarization techniques for building paragraph-sized summaries, based on lexical chains. Our system got highest ROUGE-2 and ROUGE-SU4 scores for ideal-type answers in all test batch sets. We also discuss the limitations of the described system, such lack of the evaluation on other criteria (e.g. manual). Also, for factoid- and list -type question our system got low accuracy (which suggests that our algorithm needs to improve in the ranking of entities).

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here