Uncertainty and causal emergence in complex networks

8 Jul 2019  ·  Brennan Klein, Erik Hoel ·

The connectivity of a network conveys information about the dependencies between nodes. We show that this information can be analyzed by measuring the uncertainty (and certainty) contained in paths along nodes and links in a network. Specifically, we derive from first principles a measure known as effective information and describe its behavior in common network models. Networks with higher effective information contain more information within the dependencies between nodes. We show how subgraphs of nodes can be grouped into macro-nodes, reducing the size of a network while increasing its effective information, a phenomenon known as causal emergence. We find that causal emergence is common in simulated and real networks across biological, social, informational, and technological domains. Ultimately, these results show that the emergence of higher scales in networks can be directly assessed, and that these higher scales offer a way to create certainty out of uncertainty.

PDF Abstract

Categories


Physics and Society Social and Information Networks