Uncovering Group Level Insights with Accordant Clustering

7 Apr 2017  ·  Amit Dhurandhar, Margareta Ackerman, Xiang Wang ·

Clustering is a widely-used data mining tool, which aims to discover partitions of similar items in data. We introduce a new clustering paradigm, \emph{accordant clustering}, which enables the discovery of (predefined) group level insights. Unlike previous clustering paradigms that aim to understand relationships amongst the individual members, the goal of accordant clustering is to uncover insights at the group level through the analysis of their members. Group level insight can often support a call to action that cannot be informed through previous clustering techniques. We propose the first accordant clustering algorithm, and prove that it finds near-optimal solutions when data possesses inherent cluster structure. The insights revealed by accordant clusterings enabled experts in the field of medicine to isolate successful treatments for a neurodegenerative disease, and those in finance to discover patterns of unnecessary spending.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here