Understanding GANs via Generalization Analysis for Disconnected Support

27 Sep 2018  ·  Masaaki Imaizumi, Kenji Fukumizu ·

This paper provides theoretical analysis of generative adversarial networks (GANs) to explain its advantages over other standard methods of learning probability measures. GANs learn a probability through observations, using the objective function with a generator and a discriminator. While many empirical results indicate that GANs can generate realistic samples, the reason for such successful performance remains unelucidated. This paper focuses the situation where the target probability measure satisfies the disconnected support property, which means a separate support of a probability, and relates it with the advantage of GANs. It is theoretically shown that, unlike other popular models, GANs do not suffer from the decrease of generalization performance caused by the disconnected support property. We rigorously quantify the generalization performance of GANs of a given architecture, and compare it with the performance of the other models. Based on the theory, we also provide a guideline for selecting deep network architecture for GANs. We demonstrate some numerical examples which support our results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here