Understanding Out-of-distribution: A Perspective of Data Dynamics

Despite machine learning models' success in Natural Language Processing (NLP) tasks, predictions from these models frequently fail on out-of-distribution (OOD) samples. Prior works have focused on developing state-of-the-art methods for detecting OOD. The fundamental question of how OOD samples differ from in-distribution samples remains unanswered. This paper explores how data dynamics in training models can be used to understand the fundamental differences between OOD and in-distribution samples in extensive detail. We found that syntactic characteristics of the data samples that the model consistently predicts incorrectly in both OOD and in-distribution cases directly contradict each other. In addition, we observed preliminary evidence supporting the hypothesis that models are more likely to latch on trivial syntactic heuristics (e.g., overlap of words between two sentences) when making predictions on OOD samples. We hope our preliminary study accelerates the data-centric analysis on various machine learning phenomena.

PDF Abstract NeurIPS Workshop 2021 PDF NeurIPS Workshop 2021 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here