Understanding Perceptual and Conceptual Fluency at a Large Scale

We create a dataset of 543,758 logo designs spanning 39 industrial categories and 216 countries. We experiment and compare how different deep convolutional neural network (hereafter, DCNN) architectures, pretraining protocols, and weight initializations perform in predicting design memorability and likability... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Causal Inference