Understanding the Loss Surface of Neural Networks for Binary Classification

ICML 2018  ·  Shiyu Liang, Ruoyu Sun, Yixuan Li, R. Srikant ·

It is widely conjectured that the reason that training algorithms for neural networks are successful because all local minima lead to similar performance, for example, see (LeCun et al., 2015, Choromanska et al., 2015, Dauphin et al., 2014). Performance is typically measured in terms of two metrics: training performance and generalization performance... Here we focus on the training performance of single-layered neural networks for binary classification, and provide conditions under which the training error is zero at all local minima of a smooth hinge loss function. Our conditions are roughly in the following form: the neurons have to be strictly convex and the surrogate loss function should be a smooth version of hinge loss. We also provide counterexamples to show that when the loss function is replaced with quadratic loss or logistic loss, the result may not hold. read more

PDF Abstract ICML 2018 PDF ICML 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here