Understanding Trajectory Behavior: A Motion Pattern Approach

Mining the underlying patterns in gigantic and complex data is of great importance to data analysts. In this paper, we propose a motion pattern approach to mine frequent behaviors in trajectory data. Motion patterns, defined by a set of highly similar flow vector groups in a spatial locality, have been shown to be very effective in extracting dominant motion behaviors in video sequences. Inspired by applications and properties of motion patterns, we have designed a framework that successfully solves the general task of trajectory clustering. Our proposed algorithm consists of four phases: flow vector computation, motion component extraction, motion component's reachability set creation, and motion pattern formation. For the first phase, we break down trajectories into flow vectors that indicate instantaneous movements. In the second phase, via a Kmeans clustering approach, we create motion components by clustering the flow vectors with respect to their location and velocity. Next, we create motion components' reachability set in terms of spatial proximity and motion similarity. Finally, for the fourth phase, we cluster motion components using agglomerative clustering with the weighted Jaccard distance between the motion components' signatures, a set created using path reachability. We have evaluated the effectiveness of our proposed method in an extensive set of experiments on diverse datasets. Further, we have shown how our proposed method handles difficulties in the general task of trajectory clustering that challenge the existing state-of-the-art methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here