Une véritable approche $\ell_0$ pour l'apprentissage de dictionnaire

12 Sep 2017  ·  Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan ·

Sparse representation learning has recently gained a great success in signal and image processing, thanks to recent advances in dictionary learning. To this end, the $\ell_0$-norm is often used to control the sparsity level. Nevertheless, optimization problems based on the $\ell_0$-norm are non-convex and NP-hard. For these reasons, relaxation techniques have been attracting much attention of researchers, by priorly targeting approximation solutions (e.g. $\ell_1$-norm, pursuit strategies). On the contrary, this paper considers the exact $\ell_0$-norm optimization problem and proves that it can be solved effectively, despite of its complexity. The proposed method reformulates the problem as a Mixed-Integer Quadratic Program (MIQP) and gets the global optimal solution by applying existing optimization software. Because the main difficulty of this approach is its computational time, two techniques are introduced that improve the computational speed. Finally, our method is applied to image denoising which shows its feasibility and relevance compared to the state-of-the-art.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here