Unequal Representations: Analyzing Intersectional Biases in Word Embeddings Using Representational Similarity Analysis

24 Nov 2020  ·  Michael A. Lepori ·

We present a new approach for detecting human-like social biases in word embeddings using representational similarity analysis. Specifically, we probe contextualized and non-contextualized embeddings for evidence of intersectional biases against Black women. We show that these embeddings represent Black women as simultaneously less feminine than White women, and less Black than Black men. This finding aligns with intersectionality theory, which argues that multiple identity categories (such as race or sex) layer on top of each other in order to create unique modes of discrimination that are not shared by any individual category.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here