Uneven illumination surface defects inspection based on convolutional neural network

16 May 2019  ·  Hao Wu, Yulong Liu, Wenbin Gao, Xiangrong Xu ·

Surface defect inspection based on machine vision is often affected by uneven illumination. In order to improve the inspection rate of surface defects inspection under uneven illumination condition, this paper proposes a method for detecting surface image defects based on convolutional neural network, which is based on the adjustment of convolutional neural networks, training parameters, changing the structure of the network, to achieve the purpose of accurately identifying various defects. Experimental on defect inspection of copper strip and steel images shows that the convolutional neural network can automatically learn features without preprocessing the image, and correct identification of various types of image defects affected by uneven illumination, thus overcoming the drawbacks of traditional machine vision inspection methods under uneven illumination.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here