Uni4D: A Unified Self-Supervised Learning Framework for Point Cloud Videos
Self-supervised representation learning for point cloud videos remains a challenging problem with two key limitations: (1) existing methods rely on explicit knowledge to learn motion, resulting in suboptimal representations; (2) prior Masked AutoEncoder (MAE) frameworks struggle to bridge the gap between low-level geometry and high-level dynamics in 4D data. In this work, we propose a novel self-disentangled MAE for learning expressive, discriminative, and transferable 4D representations. To overcome the first limitation, we learn motion by aligning high-level semantics in the latent space \textit{without any explicit knowledge}. To tackle the second, we introduce a \textit{self-disentangled learning} strategy that incorporates the latent token with the geometry token within a shared decoder, effectively disentangling low-level geometry and high-level semantics. In addition to the reconstruction objective, we employ three alignment objectives to enhance temporal understanding, including frame-level motion and video-level global information. We show that our pre-trained encoder surprisingly discriminates spatio-temporal representation without further fine-tuning. Extensive experiments on MSR-Action3D, NTU-RGBD, HOI4D, NvGesture, and SHREC'17 demonstrate the superiority of our approach in both coarse-grained and fine-grained 4D downstream tasks. Notably, Uni4D improves action segmentation accuracy on HOI4D by $+3.8\%$.
PDF Abstract