Uniform-in-time propagation of chaos for mean field Langevin dynamics
We study the mean field Langevin dynamics and the associated particle system. By assuming the functional convexity of the energy, we obtain the $L^p$-convergence of the marginal distributions towards the unique invariant measure for the mean field dynamics. Furthermore, we prove the uniform-in-time propagation of chaos in both the $L^2$-Wasserstein metric and relative entropy.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here