Unigram-Normalized Perplexity as a Language Model Performance Measure with Different Vocabulary Sizes

26 Nov 2020  ·  Jihyeon Roh, Sang-Hoon Oh, Soo-Young Lee ·

Although Perplexity is a widely used performance metric for language models, the values are highly dependent upon the number of words in the corpus and is useful to compare performance of the same corpus only. In this paper, we propose a new metric that can be used to evaluate language model performance with different vocabulary sizes. The proposed unigram-normalized Perplexity actually presents the performance improvement of the language models from that of simple unigram model, and is robust on the vocabulary size. Both theoretical analysis and computational experiments are reported.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here