UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

25 Dec 2023  ·  Jiannan Wu, Yi Jiang, Bin Yan, Huchuan Lu, Zehuan Yuan, Ping Luo ·

The reference-based object segmentation tasks, namely referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS), aim to segment a specific object by utilizing either language or annotated masks as references. Despite significant progress in each respective field, current methods are task-specifically designed and developed in different directions, which hinders the activation of multi-task capabilities for these tasks. In this work, we end the current fragmented situation and propose UniRef++ to unify the four reference-based object segmentation tasks with a single architecture. At the heart of our approach is the proposed UniFusion module which performs multiway-fusion for handling different tasks with respect to their specified references. And a unified Transformer architecture is then adopted for achieving instance-level segmentation. With the unified designs, UniRef++ can be jointly trained on a broad range of benchmarks and can flexibly complete multiple tasks at run-time by specifying the corresponding references. We evaluate our unified models on various benchmarks. Extensive experimental results indicate that our proposed UniRef++ achieves state-of-the-art performance on RIS and RVOS, and performs competitively on FSS and VOS with a parameter-shared network. Moreover, we showcase that the proposed UniFusion module could be easily incorporated into the current advanced foundation model SAM and obtain satisfactory results with parameter-efficient finetuning. Codes and models are available at \url{https://github.com/FoundationVision/UniRef}.

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Referring Expression Segmentation Refer-YouTube-VOS (2021 public validation) UniRef++-L J&F 66.9 # 7
J 64.8 # 7
F 69.0 # 7