Universal Approximation Properties for an ODENet and a ResNet: Mathematical Analysis and Numerical Experiments

22 Dec 2020  ·  Yuto Aizawa, Masato Kimura, Kazunori Matsui ·

We prove a universal approximation property (UAP) for a class of ODENet and a class of ResNet, which are simplified mathematical models for deep learning systems with skip connections. The UAP can be stated as follows. Let $n$ and $m$ be the dimension of input and output data, and assume $m\leq n$. Then we show that ODENet of width $n+m$ with any non-polynomial continuous activation function can approximate any continuous function on a compact subset on $\mathbb{R}^n$. We also show that ResNet has the same property as the depth tends to infinity. Furthermore, we derive the gradient of a loss function explicitly with respect to a certain tuning variable. We use this to construct a learning algorithm for ODENet. To demonstrate the usefulness of this algorithm, we apply it to a regression problem, a binary classification, and a multinomial classification in MNIST.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods