Universal Dependencies Parsing for Colloquial Singaporean English

Singlish can be interesting to the ACL community both linguistically as a major creole based on English, and computationally for information extraction and sentiment analysis of regional social media. We investigate dependency parsing of Singlish by constructing a dependency treebank under the Universal Dependencies scheme, and then training a neural network model by integrating English syntactic knowledge into a state-of-the-art parser trained on the Singlish treebank. Results show that English knowledge can lead to 25% relative error reduction, resulting in a parser of 84.47% accuracies. To the best of our knowledge, we are the first to use neural stacking to improve cross-lingual dependency parsing on low-resource languages. We make both our annotation and parser available for further research.

PDF Abstract ACL 2017 PDF ACL 2017 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here