Universal Estimation of Directed Information

11 Jan 2012Jiantao JiaoHaim H. PermuterLei ZhaoYoung-Han KimTsachy Weissman

Four estimators of the directed information rate between a pair of jointly stationary ergodic finite-alphabet processes are proposed, based on universal probability assignments. The first one is a Shannon--McMillan--Breiman type estimator, similar to those used by Verd\'u (2005) and Cai, Kulkarni, and Verd\'u (2006) for estimation of other information measures... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet