Universal Simulation of Stable Dynamical Systems by Recurrent Neural Nets

L4DC 2020  ·  Joshua Hanson, Maxim Raginsky ·

It is well-known that continuous-time recurrent neural nets are universal approximators for continuous-time dynamical systems. However, existing results provide approximation guarantees only for finite-time trajectories. In this work, we show that infinite-time trajectories generated by dynamical systems that are stable in a certain sense can be reproduced arbitrarily accurately by recurrent neural nets. For a subclass of these stable systems, we provide quantitative estimates on the sufficient number of neurons needed to achieve a specified error tolerance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here