Universality, Robustness, and Detectability of Adversarial Perturbations under Adversarial Training

ICLR 2018 Jan Hendrik Metzen

Classifiers such as deep neural networks have been shown to be vulnerable against adversarial perturbations on problems with high-dimensional input space. While adversarial training improves the robustness of classifiers against such adversarial perturbations, it leaves classifiers sensitive to them on a non-negligible fraction of the inputs... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet