University of Hildesheim at SemEval-2022 task 5: Combining Deep Text and Image Models for Multimedia Misogyny Detection

This paper describes the participation of the University of Hildesheim at the SemEval task 5. The task deals with Multimedia Automatic Misogyny Identification (MAMI). Hateful memes need to be detected within a data collection. For this task, we implemented six models for text and image analysis and tested the effectiveness of their combinations. A fusion system implements a multi-modal transformer to integrate the embeddings of these models. The best performing models included BERT for the text of the meme, manually derived associations for words in the memes and a Faster R-CNN network for the image. We evaluated the performance of our approach also with the data of the Facebook Hateful Memes challenge in order to analyze the generalisation capabilities of the approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here