UnMask: Adversarial Detection and Defense Through Robust Feature Alignment

Deep learning models are being integrated into a wide range of high-impact, security-critical systems, from self-driving cars to medical diagnosis. However, recent research has demonstrated that many of these deep learning architectures are vulnerable to adversarial attacks--highlighting the vital need for defensive techniques to detect and mitigate these attacks before they occur... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet